
THE FOREST COMMUNITIES OF MOUNT RAINIER NATIONAL PARK

Jerry F. Franklin William H. Moir Miles A. Hemstrom Sarah E. Greene Bradley G. Smith

Scientific Monograph Series No. 19

U.S. Department of the Interior National Park Service Washington, D.C. 1988

Frontispiece. Mosaic of forest stands of varying age and composition on Sunrise Ridge Mount Rainier National Park.

AUTHORS

JERRY F. FRANKLIN is Chief Plant Ecologist, U.S. Department of Agriculture, Forest Service, and Bloedel Professor of Ecosystem Analy sis, College of Forest Resources AR-10, University of Washington. Seattle, Washington 98195. WILLIAM H. MOIR is Ecologist, U.S. Department of Agriculture, Forest Service, Southwestern Region, Federal Building, 517 Gold Avenue, S.W., Albuquerque, New Mexice 87102. MILES A. HEMSTROM is Area Ecologist, Willamette Nationa Forest, 211 East 7th Street, Eugene, Oregon 97440. SARAH E GREENE is Research Forester, U.S. Department of Agriculture, Fores Service, Forestry Sciences Laboratory, Corvallis, Oregon 97331. BRADLEY G. SMITH is Research Assistant, Department of Fores Science, Oregon State University, Corvallis, Oregon 97331.

Contents

Acknowledgements	xv
	xvi
Chapter 1. Introduction	1
Chapter 2. Physical Setting	3
Climate	4
Geology	4
Topography	8
Soils	10
Chapter 3. Biological Features	16
Vegetation	16
Disturbances to Vegetation	20
Chapter 4. Methods	25
Field Sampling	25
Data Analysis	26
Terminology and Nomenclature	29
Chapter 5. Forest Classification	32
Moist Forest Ecosystems	35
Tsuga heterophylla/Achlys triphylla Association	50
Tsuga heterophylla/Polystichum munitum Association	52
Tsuga heterophylla/Oplopanax horridum Association	54
Alnus rubra/Rubus spectabilis Community Type	56
Abies amabilis/Oplopanax horridum Association	58
Abies amabilis/Tiarella unifoliata Association	61
Modal Forest Ecosystems	64
Abies amabilis/Vaccinium alaskaense Association	64
Vaccinium alaskaense Phase	64
Berberis nervosa Phase	67
Rubus pedatus Phase	67
Chamaecyparis nootkatensis Phase	73
General Relationships of Type	74
Dry Forest Ecosystems	75
Tsuga heterophylla/Gaultheria shallon Association	75

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environment and cultural value of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

Library of Congress Cataloging-in-Publication Data

The Forest Communities of Mount Rainier National Park.

(Scientific monograph series; no. 19)
Supt. of Docs. no.: I 29.80:19
Bibliography: p.
Includes index.
1. Forest ecology—Washington (State)—Mount Rainier
National Park. 2. Mount Rainier National Park (Wash.)
I. Franklin, Jerry F. II. Series: National Park Service
scientific monograph series ; no. 19.
QK192.F66 1988 574.5'2642'0979778 88-600188
ISBN 0-943475-01-5 (pbk.)

Published by the U.S. Department of the Interior, National Park Service, with support from the U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Oregon

> Printed in the United States of America U.S. Government Printing Office ☆ U.S. Government Printing Office: 1988 - 534-790

Pseudotsuga menziesii/Ceanothus velutinus Community	
Туре	88
Pseudotsuga menziesii/Xerophyllum tenax Community Type	89
Pseudotsuga menziesii/Viola sempervirens Community Type	90
Abies amabilis/Gaultheria shallon Association	92
Abies amabilis/Berberis nervosa Association	93
Abies amabilis/Xerophyllum tenax Association	96
Cold Forest Ecosystems	100
Abies amabilis/Rubus lasiococcus Association	100
Erythronium montanum Phase	101
Rubus lasiococcus Phase	112
Abies lasiocarpa/Valeriana sitchensis Community Type	114
Abies amabilis/Menziesia ferruginea Association	116
Chamaecyparis nootkatensis/Vaccinium ovalifolium	
Association	118
Abies amabilis/Rhododendron albiflorum Association	120
Other Forest Communities	122
Pseudotsuga menziesii/Arctostaphylos uva-ursi Association	123
Chapter 6. Environmental and Floristic Relationships	127
Topographic-Elevational Patterns	127
Classification Insights from Similarity, Discriminant, and	
Principal Component Analysis	132
Similarity Analysis	132
Discriminant Analysis	136
Principal Component Analysis	137
Chapter 7. Forest Dynamics	149
Large-Scale Disturbances	149
Successional Sequences	153
Tree Mortality and Small-Scale Disturbances	156
Chapter 8. Management Interpretations of the Habitat Types	159
Physical Conditions	159
Biological Conditions	162
Potential for Disturbances	165
Development Potential	165
Literature Cited	167
Appendix A. Key to Typical Forest Types of Mount Rainier	
National Park	173
Appendix B. Synopses of the Forest Types of Mount Rainier	
National Park	177
Index	185

and the second second

vi

.

Plates

- Plate 1. Map showing distribution of habitat types in Mount Rainier National Park.
- Plate 2. Map showing distribution of forest age classes in Mount Rainier National Park.

Summary

The forests of Mount Rainier National Park are a major natural resource. They extend up the mountain slopes to an elevation of about 1800 m (5,800 ft) and occupy 60% of the Park landscape. This phytosociological study, conducted during 1975-80, has provided a detailed description and classification of these forests for the use of park managers and visitors. The forests lie within three zones based upon the major climax tree species: Tsuga heterophylla, Abies amabilis, and Tsuga mertensiana. A total of 14 plant associations and 5 community types were recognized across the range of environmental conditions represented within the Park. The moist forest types have rich understories that include numerous herbaceous species and shrubs such as Oplopanax horridum. The Abies amabilis/Vaccinium alaskaense Association is typical of modal environments and the most extensive formation within the Park. Dry associations are typified by Gaultheria shallon- and Berberis nervosa-dominated understories. High-elevation forest types belong to the cold grouping and are typified by herbaceous understories on better drained sites and by dense understories of ericaceous shrubs on wet sites. Forest types show strong relations with elevation and landform, although details vary in the four Park quadrants. Moisture, temperature, and duration of snowpack appear to be the primary environmental variables. Wildfire has been the major forest disturbance; approximately 90% of the forests have arisen after fire, 7% after avalanche, and 2% after lahars. The natural fire rotation was calculated as being 465 years before white settlement of the region. Climatic episodes appear to have been important in creating conditions for wildfire. Uses of the forest type classification by managers include interpretations of the potential value of sites for development, productivity and resilience, value for wildlife, and visitor interest. Large colorkeyed maps (Plates 1 and 2) are included on the inside back cover to show the distribution of the plant associations and major forest age classes within the Park.